Transmissibility and potential for disease progression of drug resistant *Mycobacterium tuberculosis*: prospective cohort study

Journal-Club, 09. Dezember 2019
Matthias von Rotz
Aktuelle Situation

TB IS THE TOP INFECTIOUS DISEASE KILLER WORLDWIDE

IN 2018

1.5 MILLION
(1.4-1.6 million)
PEOPLE DIED
FROM TB

TB IS THE
LEADING KILLER
OF PEOPLE WITH HIV

INCLUDING
251 000 DEATHS
(223 000 - 281 000)
AMONG PEOPLE
WITH HIV

AND A MAJOR CAUSE
OF DEATH DUE TO
ANTIMICROBIAL RESISTANCE

10 MILLION
(9.0-11.1 MILLION)
PEOPLE FELL ILL
WITH TB

5.7 MILLION
MEN

3.2 MILLION
WOMEN

1.1 MILLION
CHILDREN

Global Tuberculosis Report 2019
Europa

Global Tuberculosis Report 2019
‘The End TB Strategy’

Herausforderungen

43 million lives saved between 2000 and 2014 through effective TB diagnosis and treatment

47% decline in TB mortality rate and 42% decline in TB prevalence rate since 1990

HIV-related TB deaths down by 32% in the last decade

Fragile progress in MDR-TB
Treatment for MDR-TB has increased with almost all cases detected in 2014 started treatment

US$ 1.4 billion funding gap per year for implementation of existing TB interventions. An additional gap of US$ 1.3 billion exists for research

3.6 million people with TB are missed by health systems every year and therefore may not get adequate care they need

TB/HIV response needs acceleration
Antiretroviral treatment, treatment of latent TB infection and other interventions still need further scale-up

MDR-TB remains a public health crisis
Only one in four MDR-TB cases detected and one in two cases cured
FIGURE 1. Substantial and Protracted Shortfalls in Global Economic Output
World Real GDP

Base = 100

Drug-resistant infections: a threat to our economic future, 2019
Drug-resistant infections: a threat to our economic future, 2019

FIGURE 2. Economic Costs of AMR May Be as Severe as During the Financial Crisis

AMR could reduce GDP substantially—but unlike in the recent financial crisis, the damage could last longer and affect low-income countries the most (annual costs as % of GDP)

“Low-AMR” scenario, 2050

“High-AMR” scenario, 2050

Country group: Low-income, Lower middle-income, Upper middle-income, High-income, World

Drug-resistant infections: a threat to our economic future, 2019
Einleitung

• Schätzungen der UN 2019: 10 Millionen Tote durch resistente Infektionen jährlich 2050.
• Prävalenz von MDR-Tuberkulose in einzelnen Ländern bis 38%.
• Entscheidend: Ob resistente Bakterien ‘eingeschränkt oder weniger fit’ sind neue Infektionen zu verursachen.
• Prävention von Auftreten von neuen Infektionen, der Fokus war empirische Therapie.
• Für Unterbruch der Transmission von bestehender resisterter Tbc wertlos.
Einleitung

• Meisten Leute mit resistenter Tbc mit resistenten Stämmen infiziert.

• Entscheidend:
 – Wie schnell Patienten mit resistenter Tbc identifiziert werden?
 – Relative Übertragbarkeit der resistenten Tbc-Stämmen?

• Mangel an Studien beim Menschen: Reduktion der ‘Fitness’ von M. tuberculosis mit Acquisition von Resistenzen?
Methodik

- Patienten aus 106 District-Gesundheitszentren in Lima.
- Mind. 1 von 2 Sputa mit Säure-festen Stäbchen (Ziehl-Neelsen), oder radiologische Veränderungen vereinbar mit Tbc (bei fehlendem Sputum).
- Einschluss von Index-Patienten (>16 Jahre).
- Haushalts-Visite, Einschluss Kontaktpersonen in prospektive Kohorten-Studie.
Methodik

• Sputum-Proben für Studien-Labor (Wiederholung Direktpräparat, Kultur, Sensibilitätsprüfung).
• Zwei Radiologen füllten einen standardisierten Bogen aus.
• Index-Patient: 6 Monate Therapie (Intensiv, Konsolidation)
• Bei MDR-Tbc: Therapie gemäß nationaler Richtlinien.

Index-Patient:
• Follow-up Daten: 2, 6, 12 und 24 Monate (36 und 48 Monate).
• DP und Kultur nach 2 und 6 Monaten.
Haushalts-Kontaktpersonen

- Tuberkulose-Symptome (-> Health Center)
- Tuberkulin-Haut-Test.
- Visite nach 2, 6 und 12 Monaten.
- Tuberkulin-Haut-Test nach 6 und 12 Monaten.

- Outcome: Infektionen zur Baseline, innerhalb von 12 Monaten.
Analyse

- Alters-adaptierte univariate Analyse.
- Multivariate Analyse mit allen Co-Variablen.
- Annahme, dass danach keine unbeobachteten Confounder bestehen.

- Inzidenz von Tuberkulose-Infektion (‘latent’).
Charakteristika der Kontaktpersonen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pan susceptible</th>
<th>Monoresistant</th>
<th>Polyresistant</th>
<th>Multidrug resistant</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years; n=10 160):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>2193 (62)</td>
<td>592 (17)</td>
<td>242 (7)</td>
<td>526 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>16-30</td>
<td>1667 (60)</td>
<td>425 (15)</td>
<td>225 (8)</td>
<td>443 (16)</td>
<td></td>
</tr>
<tr>
<td>31-45</td>
<td>1063 (59)</td>
<td>316 (17)</td>
<td>130 (7)</td>
<td>302 (17)</td>
<td></td>
</tr>
<tr>
<td>≥45</td>
<td>1266 (62)</td>
<td>326 (16)</td>
<td>174 (9)</td>
<td>270 (13)</td>
<td></td>
</tr>
<tr>
<td>Sex (n=10 160):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3375 (61)</td>
<td>948 (17)</td>
<td>427 (8)</td>
<td>823 (15)</td>
<td>0.16</td>
</tr>
<tr>
<td>Male</td>
<td>2814 (61)</td>
<td>711 (16)</td>
<td>344 (8)</td>
<td>718 (16)</td>
<td></td>
</tr>
<tr>
<td>HIV status (n=10 040):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>6089 (61)</td>
<td>1639 (16)</td>
<td>753 (8)</td>
<td>1515 (15)</td>
<td>0.45</td>
</tr>
<tr>
<td>Positive</td>
<td>21 (60)</td>
<td>4 (11)</td>
<td>5 (14)</td>
<td>5 (14)</td>
<td></td>
</tr>
<tr>
<td>Diabetes (n=10 085):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6034 (61)</td>
<td>1620 (16)</td>
<td>748 (8)</td>
<td>1500 (15)</td>
<td>0.95</td>
</tr>
<tr>
<td>Yes</td>
<td>110 (60)</td>
<td>30 (16)</td>
<td>16 (9)</td>
<td>27 (15)</td>
<td></td>
</tr>
<tr>
<td>BCG scars (n=10 159):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>866 (61)</td>
<td>211 (15)</td>
<td>121 (9)</td>
<td>217 (15)</td>
<td>0.17</td>
</tr>
<tr>
<td>≥1</td>
<td>5323 (61)</td>
<td>1447 (17)</td>
<td>650 (7)</td>
<td>1324 (15)</td>
<td></td>
</tr>
</tbody>
</table>
Charakteristika der Kontaktpersonen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Drug resistance profile of index patient*</th>
<th></th>
<th></th>
<th></th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pan susceptible</td>
<td>Monoresistant</td>
<td>Polyresistant</td>
<td>Multidrug resistant</td>
<td></td>
</tr>
<tr>
<td>Smoking status (n=10 057)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>5745 (61)</td>
<td>1528 (16)</td>
<td>724 (8)</td>
<td>1443 (15)</td>
<td>0.61</td>
</tr>
<tr>
<td>Smoker</td>
<td>379 (61)</td>
<td>113 (19)</td>
<td>38 (7)</td>
<td>87 (14)</td>
<td></td>
</tr>
<tr>
<td>Nutrition (n=10 067)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal weight</td>
<td>3561 (61)</td>
<td>935 (16)</td>
<td>422 (7)</td>
<td>881 (15)</td>
<td>0.61</td>
</tr>
<tr>
<td>Underweight</td>
<td>103 (61)</td>
<td>22 (13)</td>
<td>16 (10)</td>
<td>27 (16)</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>2470 (60)</td>
<td>683 (17)</td>
<td>327 (8)</td>
<td>620 (15)</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic status (n=9943)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>2125 (60)</td>
<td>602 (17)</td>
<td>261 (7)</td>
<td>528 (15)</td>
<td>0.03</td>
</tr>
<tr>
<td>Middle</td>
<td>2670 (61)</td>
<td>682 (16)</td>
<td>325 (7)</td>
<td>728 (17)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1261 (62)</td>
<td>347 (17)</td>
<td>138 (7)</td>
<td>276 (14)</td>
<td></td>
</tr>
<tr>
<td>Preventive treatment (n=10 154)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>No</td>
<td>4688 (60)</td>
<td>1238 (16)</td>
<td>596 (8)</td>
<td>1258 (16)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1498 (63)</td>
<td>419 (18)</td>
<td>175 (7)</td>
<td>282 (12)</td>
<td></td>
</tr>
</tbody>
</table>
Resultate

- 4'500 Index-Patienten (4’044 mikrobiologisch bestätigte Tbc)
- 3'339 mit Sensibilitätsprüfungen
 - 1’274 (38%) mit Resistenz auf mind. ein Medikament
 - 538 (16%) Resistenz auf ein Medikament
 - 478 (14%) Resistenz auf Isoniazid und Rifampicin (MDR)
 - 258 (7%) mit Resistenz auf >1 Medikament
Risiko für Tbc-Infektion nach 12 Monaten

<table>
<thead>
<tr>
<th>Drug resistance profile</th>
<th>Prevalence of infection* (No (%))</th>
<th>Univariable analysis (n=8630)</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference</td>
<td>Model 1 (n=7463)†</td>
<td>Model 2 (n=7463)‡</td>
</tr>
<tr>
<td>Pan susceptible</td>
<td>3597 (69.3)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Mono isoniazid</td>
<td>185 (80.8)</td>
<td>1.17 (1.09 to 1.25)¶</td>
<td>1.16 (1.08 to 1.24)¶</td>
</tr>
<tr>
<td>Mono streptomycin</td>
<td>716 (72.2)</td>
<td>1.04 (0.99 to 1.09)</td>
<td>1.03 (0.98 to 1.08)</td>
</tr>
<tr>
<td>Isoniazid+streptomycin</td>
<td>256 (74.4)</td>
<td>1.08 (1.01 to 1.16)¶</td>
<td>1.06 (0.99 to 1.14)</td>
</tr>
<tr>
<td>Multidrug resistant</td>
<td>1041 (75.7)</td>
<td>1.08 (1.04 to 1.13)¶</td>
<td>1.08 (1.04 to 1.13)¶</td>
</tr>
<tr>
<td>Other</td>
<td>353 (70.3)</td>
<td>1.02 (0.95 to 1.09)</td>
<td>1.04 (0.97 to 1.11)</td>
</tr>
</tbody>
</table>
Resultate

• 10’160 Haushaltskontakte (von 2’563 Index-Patienten)
• Tuberkulose-Infektion:
 – Bei Einschluss 4’488 (44%) infiziert
 – Bei Isoniazid-Mono-Resistenz 16% höheres Risiko einer Infektion nach 12 Monaten (im Vergleich zu sensibler Tbc)
 – Bei MDR-Tbc 8% höheres Risiko
 – Assoziation bleibt erhalten in Sensitivitätsanalysen.
• Tuberkulose-Erkrankung:
 – Keine signifikanten Unterschiede unter den Haushaltskontakten.
Risiko für Tbc-Erkrankung

<table>
<thead>
<tr>
<th>Drug resistance profile</th>
<th>Incident tuberculosis disease* (No (%))</th>
<th>Univariable analysis (n=10396)</th>
<th>Model 1 (n=8788)†</th>
<th>Model 2 (n=8788)‡</th>
<th>Model 3 (n=8459)§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan susceptible</td>
<td>181 (2.9)</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
<td>1 (reference)</td>
</tr>
<tr>
<td>Mono isoniazid</td>
<td>3 (1.2)</td>
<td>0.39 (0.12 to 1.32)</td>
<td>0.17 (0.02 to 1.26)</td>
<td>0.16 (0.02 to 1.12)</td>
<td>0 (0 to infinity)</td>
</tr>
<tr>
<td>Mono streptomycin</td>
<td>44 (3.7)</td>
<td>1.18 (0.81 to 1.72)</td>
<td>1.18 (0.78 to 1.77)</td>
<td>1.17 (0.77 to 1.76)</td>
<td>1.23 (0.81 to 1.86)</td>
</tr>
<tr>
<td>Isoniazid+streptomycin</td>
<td>6 (1.5)</td>
<td>0.52 (0.22 to 1.23)</td>
<td>0.49 (0.19 to 1.26)</td>
<td>0.48 (0.19 to 1.24)</td>
<td>0.55 (0.21 to 1.42)</td>
</tr>
<tr>
<td>Multidrug resistant</td>
<td>57 (3.6)</td>
<td>1.22 (0.87 to 1.72)</td>
<td>1.28 (0.9 to 1.83)</td>
<td>1.28 (0.89 to 1.82)</td>
<td>1.36 (0.77 to 2.38)</td>
</tr>
<tr>
<td>Other</td>
<td>27 (4.6)</td>
<td>1.57 (0.99 to 2.48)</td>
<td>1.79 (1.09 to 2.93)§</td>
<td>1.8 (1.09 to 2.96)¶</td>
<td>1.73 (1.00 to 3.00)¶</td>
</tr>
</tbody>
</table>
Diskussion

- Exposition zu MDR-Tbc mit höherem Risiko einer (latenten) Infektion mit Tuberkulose (verglichen mit sensibler Tbc).
- Gleiches Risiko für eine Tuberkulose-Erkrankung.
- Übertragbarkeit und Potential für eine Krankheitsprogression unterscheidet sich nicht zwischen MDR-Tbc und sensibler Tbc.
Vergleich mit anderen Studien

- Keine Unterschiede für Tbc-Infektion und Erkrankung bei Kindern (1985)
- Leicht erhöhtes Risiko für Tbc-Infektion, Erkrankungen jedoch gleich (Brasilien, 2001)
- Prävalenz für Tbc-Infektion höher, Risiko für Infektion unverändert, Follow-up 15 Jahre (Indien, 2011)
- Mit MDR-Tbc Risiko für Erkrankung halbiert (Peru, 2015)
- Größeres Risiko für Infektion und Erkrankung (Vietnam, 2017)
Limitationen

• Tuberkulin-Test:
 – Misst nur vorgängige Exposition, nicht Zeitpunkt des Auftretens
 – Kein Mittel zur Erfassung Zeit-abhängiger Exposition
 – Baseline-Test positiv (lang zurück liegende Infektion?)

• Meisten sekundären Tbc-Fälle waren bei Kinder:
 – meist ohne mikrobiologische Bestätigung (man nimmt an, dass Ansteckung zu Hause erfolgte)
 – 133 sekundäre Fälle mit genotypischer Analyse, nur 56 (43.6%) Übereinstimmung mit Index-Patient.