Das 3D Print Lab versteht sich als Dienstleister und Forschungsplattform für Datenvisualisierung und additive Fertigungsverfahren. Wir sind ein interdisziplinäres Team aus Chirurgen und Radiologen mit dem Ziel, neue Formen der Präsentation und Einsatzzwecke für dreidimensionale Bilddaten zu finden. Ausgangspunkt hierfür ist die langjährige Expertise der Abteilung für Mund-, Kiefer- und Gesichtschirurgie, wo 3D-Modelle schon heute routinemässig zum Einsatz kommen.


Von uns hergestellte 3D-Modelle unterstützen auch andere chirurgische Disziplinen bei der OP-Planung und werden darüber hinaus zur Patientenaufklärung eingesetzt. Darüber hinaus finden 3D-gedruckte Bilddaten in Lehre und Ausbildung Einsatz.


Als Institution innerhalb des Universitätsspitals Basel sind wir eine aktive Forschungsplattform und stehen als Projektpartner zur Verfügung.


Auf der Website des Department of Biomedical Engineering finden Sie weitere Informationen.

At the heart of our mission lies a commitment to collaboration. We proudly extend our services to a multitude of esteemed research groups and institutions, fostering a rich network of partnerships that propel innovation forward. Our collaborative efforts extend to the University of Basel, where we support a diverse array of research groups, including BIROMED-Lab, BLOG, Smart Implants, Translational Medicine Breath Research, CIAN, Planning & Navigation, ThINK, AMT, and Ad Mirabiles, through our Core Facility-3D Print Lab.

 We also actively engage with research groups at the Department of Biomedical Engineering (DBM), such as the Tissue Engineering Group and Transplantation Immunology & Nephrology, as well as the University Center for Dentistry (UZB), focusing on Biomaterials and Technology. 

Our commitment to collaboration knows no boundaries; we open our doors to universities, hospitals, centers, and institutes not only across Switzerland, but also on the global stage. This interconnectedness is a testament to our dedication to fostering a global community of innovators. 


We provide comprehensive assistance throughout the entire manufacturing process, starting from choosing the optimal imaging technique to the manufacturing of your desired 3D printed model. Leveraging the cutting-edge facilities at the Clinic for Radiology and Nuclear Medicine, we can generate the necessary 3D data deriving from CT, MRI or 3D scans. Additionally, we have the capability to work with external data in the requisite format.  


Employing state-of-the-art, medically approved or parametric design softwares, we collaboratively design the customized model that precisely meets your needs. Our production facilities integrate several 3D printing technologies: 


Stereolithography (SLA): 


Our SLA technology brings precision and detail to life. Using a high-precision laser, we cure liquid resin layer by layer to create intricate and accurate 3D models. From anatomical models to surgical guides, from biocompatible to flexible resins, SLA is the main choice when accuracy matters most. 

Digital Light Processing (DLP): 


By projecting light patterns onto a resin bath, we swiftly build your 3D designs layer by layer. DLP is perfect for creating smooth-surfaced models, making it an ideal choice for dental models, splints and surgical guides. 

Material Jetting (Polyjet) Technology: 

This process involves precise deposition of liquid photopolymer droplets onto the fabrication tray, layer by layer.  This technology offers versatile material options, allowing us to produce multi-material, multi-color objects with intricate details and realism. 

Employing a combination of powdered materials, liquid binding agents, and colored inks, Binder Jetting stands as a notable 3D printing method. This approach yields multicolored objects featuring intricate details at a comparatively lower cost. Binder Jetting demonstrates its value in crafting anatomical models, educational and research aids. 

Fused Filament Fabrication: 

Through this technique we can produce 3D objects layer by layer using several of types thermoplastic materials, making it versatile for various applications, including anatomical models and functional prototypes